Novel Unified Control Method of Induction and Permanent Magnet Synchronous Motors
Authors
Abstract:
Many control schemes have been proposed for induction motor and permanent magnet synchronous motor control, which are almost highly complex and non-linear. Also, a simple and efficient method for unified control of the electric moto are rarely investigated. In this paper, a novel control method based on rotor flux orientation is proposed. The novelties of proposed method are elimination of q-axis current loop (one controller is omitted) and utilization of a new dynamic current rate limiter. Also, unlike the conventional methods, the proposed control method could be applied on both induction motor and permanent magnet synchronous motor with only minor modifications. In addition to mentioned advantages, the torque ripple and current harmonic is reduced, too. Theoretical survey and simulation results clearly show the capability of proposed method for high and low speed applications in steady and transient states. Many control schemes have been proposed for induction motor and permanent magnet synchronous motor control, which are almost highly complex and non-linear. Also, a simple and efficient method for unified control of the electric moto are rarely investigated. In this paper, a novel control method based on rotor flux orientation is proposed. The novelties of proposed method are elimination of q-axis current loop (one controller is omitted) and utilization of a new dynamic current rate limiter. Also, unlike the conventional methods, the proposed control method could be applied on both induction motor and permanent magnet synchronous motor with only minor modifications. In addition to mentioned advantages, the torque ripple and current harmonic is reduced, too. Theoretical survey and simulation results clearly show the capability of proposed method for high and low speed applications in steady and transient states.
similar resources
Digital Control of Permanent Magnet Synchronous Motors
Permanent Magnet Synchronous Motor (PMSM) variable-speed drive is widely used in the industry because of its particularly high mechanical power density, simplicity and cost effectiveness. Eliminating the mechanical sensor mounted on the shaft of the motors gives further improvement. These drives are referred to as “sensorless” electrical drives. In this paper a novel sensorless algorithm is pro...
full textA New Hunting Control Method for Permanent Magnet Hysteresis Motors
Hunting is a flutter associated with the synchronous speed that gives rise to the gyro drifting errors and may cause objectionable time-displacement errors in video head wheel drives and other precision scanning systems. In this paper, dynamic characteristics of permanent Magnet hysteresis motors are presented and hunting is explained. New damping techniques have been developed using optimi...
full textNonlinear Model of Permanent-Magnet Synchronous Motors
Jun-qiang Lian, Shun-yi Xie , Wang Jian,Ping Hu Department of Weaponry Engineering., Naval University of Engineering, Wuhan 430033, China [email protected] Department of Weaponry Engineering., Naval University of Engineering, Wuhan 430033, China Higher Education Research Units., Naval University of Engineering, Wuhan 430033, China Department of Weaponry Engineering., Naval University of Engineer...
full textSensorless V/f Control of Permanent Magnet Synchronous Motors
Daniel Montesinos-Miracle1, P. D. Chandana Perera2, Samuel Galceran-Arellano1 and Frede Blaabjerg3 1Centre d'Innovació Tecnològica en Convertidors Estàtics i Accionaments, Departament d'Enginyeria Elèctrica, Universitat Politècnica de Catalunya 2Department of Electrical and Information Engineering, Faculty of Engineering, University of Ruhuna 3Institute of Energy Technology, Aalborg University ...
full textParameter Identification of Permanent-magnet Synchronous Motors for Sensorless Control
An online parameter identification method is proposed for sensorless control for surface and interior permanent-magnet synchronous motors (SPMSMs and IPMSMs, respectively). As this method does not use rotor position or velocity to identify motor parameters, the identified parameters are not affected by position estimation error under sensorless control. The proposed method that is based on syst...
full textMy Resources
Journal title
volume 32 issue 2
pages 256- 269
publication date 2019-02-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023